Outils pour utilisateurs

Outils du site


python:first_course_statistics

General instructions

Read following important documentation about:

Get the data from this site.

Save your scripts in a folder inside the data folder, calling the script folder 'my_scripts' or whaterver. If 'my-scripts' is set as your current working directory, then the data files are available under this address '../[data file]', for instantce: '../geyser1.TAB'

Eruptions of the "Old Faithful" geyser (p.5)


Histogram (p.5)

import pandas as pd
import matplotlib.pyplot as plt
gys1 = pd.DataFrame(pd.read_csv('../geyser1.TAB', '\t'))
g_int = gys1['Interval']
ax = plt.gca()
ax.hist(g_int, bins=20, color='r')
ax.set_xlabel('Intereruption time')
ax.set_ylabel('Frequency')
ax.set_title('Histogram')
plt.show() 


Boxplot (p. 6)

import matplotlib.pyplot as plt
import pandas as pd
gysr1_boxplot = pd.read_csv('.../geyser1.TAB', '\t')
data_gysr1 = gysr1_boxplot['Interval']
plt.boxplot(data_gysr1)
ax = plt.gca()
ax.set_xlabel('222 cases')
ax.set_ylabel('Interruption time ( minutes')
ax.set_title('Box and Whisker Plot')
plt.show()


ScatterPlot (p. 7)

AB: Put face- and edgecolor to change both of them. You can also have two different colors for the in- and outside of each dot.

import matplotlib.pyplot as plt
import pandas as pd
geysr1_scatterplot = pd.read_csv('.../geyser1.TAB', '\t')
geysr1_data_Xax = geysr1_scatterplot['Duration']
geysr1_data_Yax = geysr1_scatterplot['Interval']
plt.scatter(geysr1_data_Xax, geysr1_data_Yax, facecolor='y', edgecolor='y')
ax = plt.gca()
ax.set_xlabel('Eruption duration time (minutes)')
ax.set_ylabel('Interuption time (minutes)')
ax.set_title('Scatter Plot of INTERVAL vs DURATION')
plt.show()


Descriptive statistics (p.9)

Note: try different examples, e.g. the whole population or only those where 'Duration' ⇐ 3, the whole dataframe

docexample

import pandas as pd
gysr1 = pd.read_csv('../geyser1.tab', '\t')
gysr1['Duration'][gysr1['Duration'] <= 3].describe()


Boxplot (p.9)

Selecting rows in a dataframe: doc / example

import matplotlib.pyplot as plt
import pandas as pd
gysr1 = pd.read_csv('../geyser1.tab', '\t')
gysr1_inf3 = gysr1.loc[gysr1['Duration'] <= 3]
gysr1_sup3 = gysr1.loc[gysr1['Duration'] > 3]
plt.boxplot([gysr1_inf3['Interval'],gysr1_sup3['Interval']], labels= ['inf3','sup3'])


International adoption rates (p.13)

Boxplot (p.14)

import matplotlib.pyplot as plt
import pandas as pd
adopt_data = pd.read_csv('D:\Python\Libri\A_Casebook_for_a_First_Course_in_Statistics_and_Data_Analysis_Datasets\Data\Tab\\adopt.TAB', '\t')
adopt1 = adopt_data['Visa91']
plt.boxplot(adopt1)
ax = plt.gca()
ax.set_title('Box and Whisker Plot')
ax.set_xlabel('39 cases')
ax.set_ylabel('Number of visas in 1991')
plt.show()


Histogram (p.14)

import matplotlib.pyplot as plt
import pandas as pd
adopt_data = pd.read_csv('D:\Python\Libri\A_Casebook_for_a_First_Course_in_Statistics_and_Data_Analysis_Datasets\Data\Tab\\adopt.TAB', '\t')
adopt1 = adopt_data['Visa91']
plt.hist(adopt1)
plt.show()


Histogram with Log(p.18)

don't find the way to do it

import pandas as pd
import matplotlib.pyplot as plt
adopt = pd.DataFrame(pd.read_csv('D:\Python\Libri\A_Casebook_for_a_First_Course_in_Statistics_and_Data_Analysis_Datasets\Data\Tab\\adopt.TAB', '\t'))
adopt_loghist = adopt['Visa91']
#adopt_loghist.semilogx() --> was one of the possibilities
ax = plt.gca()
ax.hist(adopt_loghist, bins=10, plt.loglog(0.5,3.5), color='r') #put log=True instead, but you will get the log for the frequencies
plt.gca().set_xscale("log")
ax.set_xlabel('Log (Number of 1991 visas')
ax.set_ylabel('Frequency')
ax.set_title('Histogram')
plt.show() 

Scatterplot (p. 17)

import matplotlib.pyplot as plt
import pandas as pd
adoption_scatterplot = pd.read_csv('...\adopt.TAB', '\t')
adopt_data_Xax = adoption_scatterplot['Visa88']
adopt_data_Yax = adoption_scatterplot['Visa91']
plt.scatter(adopt_data_Xax, adopt_data_Yax, facecolor='y', edgecolor='y')
ax = plt.gca()
ax.set_xlabel('Number of Visas in 1988')
ax.set_ylim([0,2700])
ax.set_xlim([0,5000])
ax.set_ylabel('Number of Visas in 1991')
ax.set_title('ScatterPlot of Visa91 vs Visa88')
plt.show()


Scatterplot (p.18)

import matplotlib.pyplot as plt
import pandas as pd
adoption_scatterplot = pd.read_csv('D:\Python\Libri\A_Casebook_for_a_First_Course_in_Statistics_and_Data_Analysis_Datasets\Data\Tab\\adopt.TAB', '\t')
adopt_data_Xax = adoption_scatterplot['Visa91']
adopt_data_Yax = adoption_scatterplot['Visa92']
plt.scatter(adopt_data_Xax, adopt_data_Yax, facecolor='y', edgecolor='y')
ax = plt.gca()
ax.set_xlabel('Number of Visas in 1991')
ax.set_ylim([0,1800])
ax.set_xlim([0,2700])
ax.set_ylabel('Number of Visas in 1992')
ax.set_title('ScatterPlot of Visa92 vs Visa91')
plt.show()


The Performance of stock mutual funds (p. 21)


Predicting the sales and airplay of popular music (p. 23)


Another look at the "Old faithful" geyser and adoption visas (p.24)

Modified the bins of the both histograms: The Histogram is reliable for the “Old faithful” geyser but not for the Adoption rates. The appearance of the histogram changes quite a lot by changing the bins.


Productivity versus quality in the assembly plant (p. 25)

Scatterplot of Productivity vs Quality (p. 26)

import pandas as pd
import matplotlib.pyplot as plt
scatter_plot = pd.read_csv('D:\Python\Libri\A_Casebook_for_a_First_Course_in_Statistics_and_Data_Analysis_Datasets\Data\Tab\\prdq.TAB', '\t')
productivity_Y = scatter_plot['Producti']
quality_X = scatter_plot['Quality']
plt.scatter(productivity_Y, quality_X, bins=20, colors='r')
ax = plt.gca()
ax.set_Xlabel('Assembly defects per 100 cars')
ax.set_Ylabel('Hours per vehicle')
ax.set_title('Scatter Plot of Productivity VS Quality')
plt.show()


Scatter Plot of PRODJAPN vs QUALJAPN (p. 27)

import pandas as pd
import matplotlib.pyplot as plt
scatter_plot = pd.read_csv('D:\Python\Libri\A_Casebook_for_a_First_Course_in_Statistics_and_Data_Analysis_Datasets\Data\Tab\\prdq.TAB', '\t')
productivity_Y = scatter_plot['ProdJapn']
quality_X = scatter_plot['QualJapn']
plt.scatter(productivity_Y, quality_X, bins=20, colors='r')
ax = plt.gca()
ax.set_Xlabel('Assembly defects per 100 cars (Japanese origin)')
ax.set_Ylabel('Hours per vehicle (Japanese origin')
ax.set_title('Scatter Plot of PRODJAPN VS QUALJAPN')
plt.show()

Scatter Plot of PRODNONJ cs QUALNONJ (p. 27)

import pandas as pd
import matplotlib.pyplot as plt
scatter_plot = pd.read_csv('D:\Python\Libri\A_Casebook_for_a_First_Course_in_Statistics_and_Data_Analysis_Datasets\Data\Tab\\prdq.TAB', '\t')
productivity_Y = scatter_plot['ProdNonJ']
quality_X = scatter_plot['QualNonJ']
plt.scatter(productivity_Y, quality_X, bins=20, colors='r')
ax = plt.gca()
ax.set_Xlabel('Assembly defects per 100 cars (non-Japanese origin)')
ax.set_Ylabel('Hours per vehicle (non-Japanese origin')
ax.set_title('Scatter Plot of PRODNONJ VS QUALNONJ')
plt.show()

Scatterplot of productivity VS quality (p. 28)

import pandas as pd
import matplotlib.pyplot as plt
scatter_plot = pd.read_csv('D:\Python\Libri\A_Casebook_for_a_First_Course_in_Statistics_and_Data_Analysis_Datasets\Data\Tab\\prdq.TAB', '\t')
productivity_Y = scatter_plot['Producti']
quality_X = scatter_plot['Quality']
plt.scatter(productivity_Y, quality_X, bins=20, colors='r')
ax = plt.gca()
ax.set_Xlabel('Assembly defects per 100 cars')
ax.set_Ylabel('Hours per vehicle')
ax.set_title('Scatter Plot of PRODUCTIVITY VS QUALITY')
plt.show()

Productivity versus quality in the assembly plant (p.29)

It worked the first time but now it doesn't work again. Maybe again a windows error?

#1
import matplotlib.pyplot as plt
import pandas as pd
data_comparison = pd.read_csv('D:\Python\Libri\A_Casebook_for_a_First_Course_in_Statistics_and_Data_Analysis_Datasets\Data\Tab\prdq.TAB', '\t')
non_japanese = data_comparison.loc[data_comparison['QualNonJ']]
japanese = data_comparison.loc[data_comparison['QualJapn']]
plt.boxplot([non_japanese['Quality'],japanese['Quality']], labels= ['Non-japanese','Japanese'])
plt.show()
 
#2
import matplotlib.pyplot as plt
import pandas as pd
data_comparison = pd.read_csv('D:\Python\Libri\A_Casebook_for_a_First_Course_in_Statistics_and_Data_Analysis_Datasets\Data\Tab\prdq.TAB', '\t')
non_japanese = data_comparison.loc[data_comparison['ProdNonJ']]
japanese = data_comparison.loc[data_comparison['ProdJapn']]
plt.boxplot([non_japanese['Producti'],japanese['Producti']], labels= ['Non-japanese','Japanese'])
plt.show()
python/first_course_statistics.txt · Dernière modification: 2017/09/26 08:54 par Francesco Beretta